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Abstract
In this paper, we develop and illustrate a framework for determining the potential value of global
catastrophic risk (GCR) research in reducing uncertainties in the assessment of GCR risk levels 
and the effectiveness of risk-reduction options. The framework uses the decision-analysis 
concept of the expected value of perfect information (EVPI) in terms of the cost-effectiveness of 
GCR reduction. We illustrate these concepts using available information on impact risks from 
two types of near earth objects (asteroids or extinct comets) as well as nuclear war, and 
consideration of two risk reduction measures. We also discuss key challenges in extending the 
calculations to all GCRs and risk-reduction options, as part of an agenda for comprehensive, 
integrated GCR research. While real-world research would not result in perfect information, even
imperfect information could have significant value in informing GCR reduction decisions. 
Unlike most value of information approaches, our equation for calculating value of information 
is based on risk reduction cost effectiveness, to avoid implicitly equating lives and dollars e.g. 
using a value of statistical life (VSL), which may be inappropriate given the scale of GCRs. Our 
equation for value of information may be useful in other domains where VSLs would not be 
appropriate. 

1. Introduction
Global catastrophic risks (GCRs) are risks of events that could significantly harm or even destroy
human civilization at the global scale (Hempsell 2004; Baum 2010). GCRs presently posing 
hazards to humanity include nuclear war (Sagan 1983; Turco, Toon et al. 1983; Robock, Oman 
et al. 2007; Cirincione 2008; Hellman 2008; Barrett, Baum et al. 2013) and pandemic diseases
(Nouri and Chyba 2008). In the near to longer term future, GCRs could include climate change
(Weitzman 2009; Travis 2010; Baum, Maher Jr. et al. 2013) and misuse or accidents involving 
technological developments in areas such as artificial intelligence (Yudkowsky 2008; Chalmers 
2010; Sotala 2010) and nanotechnology (Phoenix and Treder 2008). Proposed interventions to 
reduce GCR include nuclear disarmament (Robock, Oman et al. 2007), development and 
distribution of vaccines and antiviral medications (Osterholm 2005), reducing greenhouse gas 
emissions through public policies (Aldy, Barrett et al. 2003) and various individual behaviors
(Dietz, Gardner et al. 2009), and abstaining from developing certain technologies (Joy 2000).

A growing body of work makes the case that reducing GCR, or certain types of GCR, is of 
very high value and thus should be one of the highest objectives for society (Ng 1991; Bostrom 
2002; Posner 2004; Matheny 2007; Tonn 2009; Ćirković, Sandberg et al. 2010; Beckstead 2013).
Published estimates of the value of preventing global catastrophe range vary wildly, from $10 
billion (Bostrom and Cirkovic 2008) to infinity (Weitzman 2009; Baum 2010), depending partly 
on the definition used for “global catastrophe”. Even the low end of this suggests a large 
allocation of resources towards GCR reduction. 
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However, setting GCR reduction as a high priority is not a sufficient guide for action: there 
are many open questions regarding how best to allocate resources for GCR reduction. One basic 
question is how much to allocate toward direct risk-reducing interventions, and how much to 
allocate to research to inform these interventions. The decision analysis concept of expected 
value of information (Clemen and Reilly 2001; Keisler 2004; Bhattacharjya, Eidsvik et al. 2013) 
can inform decisions about how much to spend on information (i.e., reduce uncertainties) prior to
making other resource allocation decisions. Usually in value-of-information calculations, 
decision options are evaluated using utility functions, money, or functionally similar metrics that 
have implicit commensurability between option tradeoffs, e.g. lives saved vs. dollars spent. 
However, equating lives and dollars, e.g. using a typical value of statistical life saved (VSL), 
may be inappropriate given the potentially vast scale of GCRs. (Moreover, quantifying total 
event consequences of global catastrophe in conventional benefit-cost terms would be 
complicated by uncertainties about direct event impacts, indirect impact factors such as public 
behavioral responses, and the levels of such impacts that could be borne before reaching 
civilizational-collapse tipping points.) We take a different, cost effectiveness based approach in 
this paper instead. A cost effectiveness based equation for value of information also may be 
useful in other domains where typical VSLs would not be appropriate. 

In this paper, we argue that value of information based on cost-effectiveness is a useful tool 
for analysis of GCR to inform risk-reduction decisions, and we show that it can be defined in a 
practical manner. We argue that such an approach would be most valuable if applied in a 
comprehensive, integrated fashion to all major types of GCR, rather than one at a time. We 
describe a number of challenges that would arise in such efforts, and argue that these challenges 
can be addressed. We also provide an illustrative, though highly idealized, example that shows 
how a practical value of information calculation can work; it also provides support for our 
argument that such calculations can have considerable value, and it provides further support for 
our argument that value of information can provide additional insight when more than one GCR 
is under consideration. 

In Section 2 of this paper, we give a brief overview of the basics of the approach, and how to 
apply it to GCRs and risk-reduction interventions in a comprehensive, integrated fashion. In 
Section 3, we discuss key challenges in real-world implementation of this paper’s framework, 
and argue that these challenges can be addressed. In Section 4, we illustrate the basic framework 
using a simple notional model of GCR from two types of near earth objects (NEOs, i.e. asteroids 
and extinct comets) as well as nuclear war, and consideration of two related risk reduction 
measures; the illustrative example shows that such calculations can have considerable value, 
especially when considering multiple GCR. We conclude in Section 5. (In Appendix I, we 
provide a detailed derivation of our formula for the expected value of information in terms of the
cost-effectiveness of GCR reduction.)

2. Overview of Framework for Value of GCR Information
In this section, we briefly discuss ways to approach three linked sets of quantitative issues: First, 
representing the probabilities of multiple GCRs; second, assessing the overall cost effectiveness 
of GCR reduction measures and calculating the value of information for GCR reduction; third, 
contrasting perfect and imperfect information. More details of our approaches and assumptions 
are given in the following sections.
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2.1 GCR Probabilities 
Figure 1 is a fault tree or logic tree illustrating that there are multiple types of global catastrophic
risks, occurrence of which is assumed to be causally independent of the others, at least at the 
level of detail used in the fault tree (e.g. nuclear war does not cause asteroid impact). The event 
“Global Catastrophe” is the top event, with round-corner nodes for a series of GCR types 
branching out below, all connected by an OR gate. The fault tree graphically indicates that a 
global catastrophe will occur if any of the following types of event occur with global 
catastrophe-level consequences: a large NEO impact (either an asteroid or a comet impact), or 
large nuclear war, or a combination of smaller events (small NEO impact plus small nuclear 
war), etc. In addition, Figure 1 includes square-corner decision nodes risk management for two 
types of GCR reduction options: (i.e. NEO redirection, and food stockpiling) that could reduce 
the probabilities of global catastrophe level outcomes. Grey arrows from the square-corner 
decision nodes to the round-corner fault tree nodes indicate that the risk management decisions 
can influence the risks of global catastrophe level events. Figure 1 also illustrates that some risk 
reduction measures, e.g. food stockpiling, can have benefits in reducing multiple types of GCR. 
Although the fault tree portion of Figure 1 is quite simple, it is intended to underline the main 
motivation for considering GCRs as a whole, and not just individual types such as asteroids, 
comets, or nuclear war: in order to assess and reduce the total probability of global catastrophic 
risk, ideally we would assess all types of GCRs and GCR reduction measures in a comprehensive
way. The framework also can account for interactions between GCR events, such as when 
occurrence of one type of event reduces society’s resilience to or even causes another type of 
event (Baum, Maher Jr. et al. 2013). Such interactions between GCRs could be represented using
larger, more detailed fault trees (e.g., by adding branches for scenarios in which both NEO 
impact and nuclear war events occur around the same time, either just by chance of timing or 
because a NEO impact somehow causes nuclear war), though it could be difficult to explicitly 
account for many GCR-interaction scenarios, and important uncertainties could remain about 
unmodeled GCR-interaction dynamics. 
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Figure 1: High-Level Global Catastrophe Fault Tree and Risk Management Decision Influence
Diagram
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Figure 2 is a generic consequence exceedance probability plot for some type of event (e.g. 
NEO impacts) with curves showing relationships between event consequence and probability of 
events with consequence exceeding that level, for both initial and reduced event risks. The figure
illustrates that reduction in probability of global catastrophe can be achieved either by reduction 
of probability of events, or by reduction of consequences. Starting from the upper right of the 
figure, the point where the initial event probability-consequence curve intersects with the global 
catastrophe consequence threshold indicates the initial probability of global catastrophe. The 
figure also includes two reduced-risk curves, one for reduced event probability and another for 
reduced event consequence. The curves for reduced probability and reduced consequence have 
been placed where they result in the same reduction in probability of global catastrophe, partly to
keep the figure simple and partly to emphasize the idea that GCR reduction can be achieved by 
reducing either event probability or consequence. For example, NEO impact risk reduction 
measures could reduce the probabilities of global catastrophe level outcomes either by shifting 
the curve downwards with reduced NEO impact probabilities (e.g., via NEO redirection) or by 
shifting the curve leftward with reduced NEO impact consequences (e.g., increasing societal 
resilience to NEO impact via food stockpiling). Thus, probabilities of global catastrophe for a 
particular GCR event type could be calculated as a function of global catastrophe consequence 
threshold, using consequence exceedance probability models for that event type. Of course, 
development of appropriate consequence exceedance probability models would often require 
substantial research, especially when focusing on rare or unprecedented events, for which a lack 
of data often leads to substantial uncertainties and biases (Taylor 2008). 

Figure 2: Global Catastrophe Probability as Function of Event Consequence and
Exceedance Probability

In many cases, there would be large uncertainties for both the direct consequences of an 
event (e.g. in terms of atmospheric soot loading from various nuclear war or NEO impact 
scenarios), as well as what threshold level of consequences would result in global catastrophe 
(e.g. in terms of the effects of atmospheric soot loading on agricultural productivity and other 
indirect effects on human society, which could be highly nonlinear if stresses could reach 
civilizational resilience-exceedance tipping points). Such uncertainties could be modeled using 
probability distributions for the global catastrophe consequence threshold and exceedance 
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probability function. One way to represent uncertainties is to display 5th and 95th percentile value 
lines in addition to the mean value lines (Garrick 2008), as shown in Figure 3.

Figure 3: Uncertainties in Global Catastrophe Probability Modeling

Given the previously mentioned assumption of causal independence, Equation 1 gives the 
total probability of a global catastrophe level event within some time period, ptotal, as a function 
of the independent probabilities pj of catastrophe events of each GCR type, j, for a total of y GCR
types. Equation 1 is mathematically consistent with the previous statement that a global 
catastrophe will occur if any of the following types of global catastrophe occurs: a large asteroid 
impact, or a comet impact, or nuclear war, etc. 

 

ptotal=1−∏
j

y

(1−p j) (Eq. 1)

2.2 Cost Effectiveness and Value of Information for GCR Reduction
Figure 4 is a high-level decision tree, consistent with typical trees used in calculating value of 
information. (The tree does not include specific quantitative values for probabilities, costs and 
benefits, but it does indicate the general sequence of decisions and events.) The leftmost square 
decision node represents a decision to be made on whether to invest in research to inform 
decisions on risk reduction measures; other decision nodes represent addition to a basic decision 
on whether to measures to reduce risks. In Figure 4, the research decision is simple: conduct 
research to better understand whether risks are currently high or low, or do not conduct such 
research. The risk reduction decision options are also simple: invest to reduce risks, or do not 
invest to reduce risks. The decision on whether to conduct research is made before the decision 
on whether to invest in reducing risks. If the decision maker chooses not to conduct research, 
then they make the risk reduction decision with some amount of uncertainty about whether risks 
begin as high or low. (That uncertainty is represented by circular chance nodes, and the 
outcomes of chance nodes are represented by diamonds.) If the decision maker does choose to 
conduct research, then they have more information and less uncertainty about whether risks 
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begin as high or low, and the decision maker can use that information when making their 
decision on whether to invest in reducing risks.

Risk 
reduction
decision 
without 
research Invest to 

reduce risks

Do not 
invest to 
reduce risks

Risk is low 

Risk is high

Risk was low, and is being reduced

Risk was high, and is being reduced

Research decision

Conduct 
research

Do not 
conduct 
research

Risk was high, and is being reduced

Risk reduction
decision after 
research when 
risk is high

Risk reduction
decision after 
research  when 
risk is low 

Invest to 
reduce risks

Risk is high

Do not 
invest to 
reduce risks

Risk was low, and is being reduced
Invest to 
reduce risks

Risk is low

Do not 
invest to 
reduce risks

Risk is low

Risk is high 

Figure 4: High-Level Decision Tree for Research and Risk Reduction Decisions

A full valuation of GCR reduction interventions, including research to gain information, 
requires some evaluative metric. Typically, decision options are evaluated using utility functions 
or functionally similar metrics.1 Such metrics have implicit commensurability between option 
tradeoffs, e.g. lives saved vs. dollars spent. Use of such approaches allows for a relatively simple
equation for expected value of options with various attributes (Clemen and Reilly 2001), 
including tradeoffs between GCR reduction and other objectives. 

In this paper, we avoid full valuations and instead conduct partial valuations in terms of cost 
effectiveness, measured in GCR reduction per unit cost. We focus on cost effectiveness for two 
reasons. First, a full valuation for GCR is complicated by the widely varying estimates for the 
value of preventing global catastrophe; which can range from $10 billion to infinity, as 
mentioned in Section 1. Second, many GCR reduction decisions involve allocating resources, 
such as money.

However, equating lives and dollars, e.g. using a value of statistical life saved (VSL), may be
inappropriate given the scale of GCRs. Therefore, our equation for calculating value of 
information is based on risk reduction cost effectiveness, which incorporates estimates of the 
performance and costs of risk reduction options without use of VSLs. Our cost effectiveness 
based equation for value of information may be useful in other domains where VSLs would not 
be appropriate.
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We assume that there are one or more decisions to be made about the allocation of resources 
to some combination of options for risk reduction and options for research, and that the decision 
rule is to choose whatever combination of options has best overall expected GCR reduction cost 
effectiveness among options considered in the analysis. (Such considerations could occur in a 
series of risk-reduction decisions, in which case the goal could be to identify the most cost-
effective interventions first, and then the second-most, and so on until a risk reduction budget or 
target has been reached.) Then in such decisions, the decision maker should buy as much risk 
reduction (and risk research enabling better risk reduction decisions) as they can at whatever 
total cost, as long as that results in the greatest cost effectiveness. Such decisions can arise when 
considering public policies, as well as the actions of individuals and other non-governmental 
organizations. (We assume that budgets are not an issue in the context of the risk reduction and 
research options under consideration, and we do not explicitly account for potential budget 
constraints in the following. However, consideration of budget constraints could be addressed as 
an extension of the approach used in the following.)

For the purposes of this analysis we ignore actual costs of research and focus on the amount 
of resources the decision maker ought to be willing to pay for the value added by the research in 
the context of the decision the research could inform. In other words, we focus on finding the 
maximal potential benefits of research. We assume that research ought to be invested in up to the
point where a funder would obtain no further benefit from investing in additional research 
(because up to that point, they would get a better overall cost effectiveness by investing in 
additional research). At that point, the expected cost effectiveness of the best risk-reduction 
option before research is equal to the expected cost effectiveness of the best risk-reduction option
after research, including the cost of research. 

Equation 2 gives the value of research as the cost-effectiveness based expected value of 
perfect information, CEEVPI (see Appendix I for derivation):

CEEVPI=E[(csb)(p0a−psa)(p0b−psb)
−cs

a] (Eq. 2)

The equation assumes the following: There exists a set of n available risk reduction options 
numbered 0, 1, … i… n. Option number 0 is the status quo case, where no new (or 
non-“business-as-usual”) risk reduction option is implemented. ci is the cost of implementing 
risk reduction option i. (It costs nothing to do nothing, so c0 = 0.) pi is the annualized total 
probability of global catastrophe if implementing option i. (We make the simplifying assumption
that pi values are static, or unchanging over the relevant time period. Consideration of dynamic, 
or time-varying pi values, could be addressed as an extension of the approach used in the 
following.) 

Each ci is treated as a random variable with some probability distribution reflecting 
uncertainty about the true cost of implementing intervention i. Each pi is also treated as a random
variable, with a probability distribution reflecting plausible estimates of the annual probability of
global catastrophe given intervention i.2 

Computationally, the uncertainty is represented using Monte Carlo simulation, where in 
Monte Carlo simulation iteration m, there are sampled values cim and pim. The risk reduction 
option s is the option with the “best” or highest risk reduction cost effectiveness in Monte Carlo 
iteration m. 
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In addition to decisions on which risk reduction option to choose, there are also decisions on 
whether to first spend some resources on research to reduce uncertainties (and to more accurately
identify which risk reduction option would be most cost effective) before making decisions on 
risk reduction options. We denote cases whether research is conducted to reduce uncertainty on a
particular factor using superscript b for “before” research or without information from research, 
and superscript a for “after” research or with information from research. 

Generally, research will have the greatest expected value if it has substantial possibility of 
informing a decision, i.e. a choice between risk reduction options. However, the CEEVPI 
formula also implies that if it is expected that the best option after research is the same as the 
best option before research (i.e., if sa=sb), then the research still can have positive expected 
value if it is inexpensive enough and also provides sufficient reduction of uncertainties in p and c
factors. 

We provide an example, calculating CEEVPI for illustrative catastrophic NEO impact risks 
and risk reduction options, in Section 4. The example suggests that the value of GCR 
information could be quite substantial.

2.3 Perfect and Imperfect Information
In the context of a decision analytic model, the value of information is based on the extent to 
which information reduces the uncertainty about the value of a particular parameter in the model.
Perfect information eliminates that uncertainty. The expected value of perfect information 
(EVPI) is the difference between the expected value of a decision with perfect information 
(where the new information influences the decision we make) and without additional information
(where we make the decision with our initial level of uncertainty) (Clemen and Reilly 2001). 

We do not expect real-world GCR research to yield perfect information in the sense of 
eliminating all uncertainties. In general, EVPI calculations are used to set an upper limit to how 
much should be spent on reducing uncertainty. On their own, EVPI calculations cannot predict 
how valuable specific research will be in reducing uncertainty. However, even imperfect 
information can have great value in reducing decision model parameter uncertainties by some 
amount. Straightforward extensions of the approach to EVPI calculations used in this paper 
(based on cost effectiveness calculations) could provide methods to assess the Expected Value of
Imperfect Information (EVII) (Clemen and Reilly 2001) and Expected Value of Including 
Uncertainty (EVIU) (Morgan and Henrion 1990). 

3. Key Challenges of Integrated Assessment of GCR
In this section, we discuss important challenges for implementation of our framework for 
calculating value of information, and for comprehensive, integrated assessment of GCR to 
inform risk-management decisions. We have already mentioned some of these challenges, which 
we discuss further here; we also discuss others that we have not previously mentioned.

One challenge is that in the real world, there would often be complex interactions between 
GCRs, not all of which could be modeled. As previously mentioned, one important 
simplification of our approach is the assumption of independence of GCRs except where 
indicated in the model. In principle, many types of interactions could be accounted for by 
building them into fault trees or other model components, but that could require substantial 
efforts. As with modeling of any complex system, there would be large uncertainties about how 
much of the real-world dynamics would remain unmodeled. A similar set of challenges (and 
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irreducible uncertainties) would be encountered in attempting to define global catastrophe 
consequence thresholds. 

Another challenge would be in setting appropriate thresholds for catastrophe. An important 
simplification of our approach is that we use a binary threshold for catastrophe (i.e. an event is 
only regarded as a global catastrophe if the event’s consequences exceed the global catastrophe 
consequence threshold, however that is defined). In reality, events of a range of magnitudes 
could be regarded as global catastrophes, either because different stakeholders have different 
definitions of what constitutes a global catastrophe, or because of uncertainties about what levels
of direct effects from catastrophe events would reach civilizational tipping points. (Those 
uncertainties would stem partly from the difficulty of predicting indirect effects of catastrophe 
events, which involve complex factors such as the behavioral responses of large human 
populations. However, the analytic challenges and uncertainties would be even greater if the aim 
were to quantify total event consequences in conventional benefit-cost terms, which is another 
reason to use a simpler cost-effectiveness approach.) Differences between global catastrophe 
thresholds can have important implications for decision making.3 Decisions should favor 
preventing higher-magnitude global catastrophes, or to decrease the severity of any given global 
catastrophe. Furthermore, ideally decisions would be robust (not highly sensitive) to placement 
of global catastrophe threshold. As always, sensitivity analysis can usefully examine the decision
implications of varying global catastrophe thresholds, and uncertainty analysis can suggest 
ranges to use in sensitivity analysis. 

There also would be challenges in defining what decision procedures to actually use, and 
how to incorporate considerations such as budget constraints and timing decisions. It seems 
unwise to take a perfectionist approach to assessing risks and risk-reduction optimality, because 
the complexity and scale of all potential risks and intervention options (including all interactions 
and combinations) could make that approach intractable. A more practical approach could be to 
make a series of risk-reduction decisions, either at regular or irregular intervals, that would first 
implement the most cost-effective interventions (or combination of interventions), then the 
second-most, and so on until a risk reduction budget or target risk level is reached (essentially a 
greedy algorithm solution to a knapsack problem, in operations research terms). We believe the 
latter approach would be roughly consistent with our basic framework, though our current 
framework does not attempt to explicitly account for budget constraints, nor decision 
sequentiality. It also should be noted that our basic approach implicitly assumes the goal is zero 
probability of global catastrophe, but other targets could be used; for example, Tonn (2009) 
suggests a 10-20 annual probability of global catastrophe as an “acceptable risk” target. Finally, 
accounting for timing of events and interventions could present substantial complications. For 
some issues, it could be important to account for decisions of exactly when to research, when to 
implement measures, and in what sequence; the urgency of implementing various measures also 
could be important. Although time dependencies are not explicitly reflected in the level of detail 
given in this paper, implicitly they could be incorporated into the model parameter values for 
effects of the risk reduction measures. (For example, if considering implementation of an 
intervention today, vs. some years from now, and if the GCR minimization objective is to 
minimize the probability of global catastrophe over the next century, then for many GCRs types 
such as NEO impact, presumably analysis would show greater GCR reduction benefits from 
implementing interventions sooner rather than later.) At least in principle, time dependencies 
could be accounted for in modules whose outputs are fed to the model structure shown in this 
paper.
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Another challenge is the fact that in the real world, there is not a single very well-funded 
actor whose prime objective is to reducing GCR cost effectively. Instead, there are many 
potentially important decision makers, each with limited budgets and responsibility for GCR 
factors, and with various objectives that compete with GCR reduction. Potentially important 
decision making entities include government agencies such as the US National Aeronautics and 
Space Administration (NASA), which have programs to address specific categories of GCR such
as NEO impact risks; nongovernmental organizations such as the Open Philanthropy Project, 
which have programs to address either specific categories of GCR or all GCR broadly; 
corporations such as Walmart, whose product management decisions can have implications for 
societal resilience, emerging technologies and other GCR factors; and individuals such as 
researchers, whose work can improve understanding of GCR factors and that have decisions to 
make about where to focus their own research efforts. Nevertheless, if credible integrated 
assessment has identified some GCR reduction options as clearly being more cost effective than 
others, that could influence decisions by various means, especially where actors already have 
some incentives to reduce societal risks. For government agencies, integrated assessment could 
inform budget reallocations, e.g. taking funding from low-value areas to fund higher-value risk-
reduction programs, and incentives could be provided via government rules that encourage cost-
effective risk-reduction benefits to society. At the other end of the size spectrum, for individual 
researchers, integrated assessment could suggest which kinds of research could best lead to risk-
reduction societal impacts, which are encouraged by both formal funding reviews and informal 
norms. Nongovernmental organizations and corporations also often combine efforts on voluntary
stewardship initiatives and other programs to reduce societal risks, and thereby gain reputational 
rewards.

Some of the most important challenges concern the scope of analysis, such as what GCRs 
and risk reduction measures to consider initially (given that starting-point estimates or at least 
bounding ranges would be needed for all associated modeling parameter values).4 One approach 
that should be relatively tractable would be breadth-first: begin by taking a broad-but-shallow 
approach to modeling GCRs and risk-reduction options relatively comprehensively, but with 
little detail, and with quantitative parameter estimates aimed only at bounding ranges of 
uncertainties; then a series of subsequent, repeated model-improvement steps could iteratively 
add depth (i.e. to add detail and better quantitative estimates using the best available empirical 
data, expert judgment, etc.); decisions on where to focus model-improvement efforts via research
could be guided by value-of-information calculations.

4. Illustrative Example: Notional Model of NEO Impact Risk and Mitigation
In this section, we illustrate our concepts using information in the literature on impact risks 
posed by two types of near earth objects (NEOs) as well as nuclear war. We also provide 
illustrative modeling of two types of impact risk reduction measures (i.e. NEO redirection, and 
food stockpiling) that could reduce the probabilities of global catastrophe level outcomes. These 
are very simple, notional models of risks and decisions, intended only to illustrate our value-of-
information concepts. The example does not attempt to reflect all the latest references, such as 
the information on asteroid and comet impact risks yielded by the WISE and NEOWISE survey 
programs (such research has often resulted in downward revisions in catastrophe probability 
estimates for both high- and low-albedo NEOs). The example also does not attempt to estimate 
the risks, nor risk-reduction benefits, related to GCRs besides NEOs and nuclear war, although 
considering those would affect overall GCR reduction cost effectiveness estimates. For example, 
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food stockpiling could have benefits in reducing the effective consequences of pandemics, which
is a category of GCR that is not considered in this illustrative example. 

4.1 Illustrative Model GCRs, Risk Reduction Measures, and Assumptions
The first type of NEO we model is “bright” or easily visible asteroids/comets, which can be 
observed and tracked long before impact using current astronomical capabilities. The Spaceguard
Survey is believed to have detected most such NEOs with greater than 1 km diameter (NRC 
2010). The second type of NEO we consider is "dark", or low reflectivity Damocloids, which 
current identification and tracking systems may not see until the objects are already headed 
directly toward impact. Partly because of the difficulty of observing Damocloids using optical 
telescopes, there are large uncertainties about the frequencies of Damocloid impact (Napier 
2008; NRC 2010). Before the Spaceguard Survey, such objects were thought to be a small risk 
relative to other NEOs, but Damocloids and long-orbit objects have more recently been viewed 
as potentially posing the majority of remaining impact risk (NRC 2010). The NEOWISE survey 
program has been using infrared to better identify Damocloids. Presumably, additional 
investments in research using infrared, radar or other technologies could provide better 
observations of Damocloids; perhaps such Damocloid observation systems would be deployed as
some combination of Earth-based systems, satellites, and probes.

We also model two types of impact event risk reduction measures. First are near earth orbit 
(NEO) object redirection measures that offer good and relatively inexpensive reduction of risks 
of asteroids that are identified and thought to impact years or decades away (Matheny 2007). The
NEO redirection measures would reduce the probability of impact of a large asteroid. However, 
we assume that they would not reduce the probability of impact of Damocloids (at least, not 
without additional investments to identify Damocloids, which is beyond the scope of this 
illustrative example). The second type of risk reduction measure is food stockpiling to provide 
significant food reserves for a large number of people in case of a period of reduced food 
production (Rampino 2008). The impact effects of large asteroids and comet could be broadly 
similar to nuclear winter and super-volcanism in their negative impacts on global food 
production. Food stockpiles may help humanity to survive either event. Rampino (2008) 
mentions one potential super-volcanism survival strategy would be to stockpile enough food (e.g.
grain) to last several years until agricultural productivity goes back up. Rampino notes that 
current inventories are only equivalent to about two months' consumption. While difficult to 
accomplish in many parts of the world, it still might be relatively feasible without advanced 
technology, should be relatively uncontroversial (especially if production is handled in a way 
that does not drive up global food prices very much), and could have some value across a 
number of GCR hazards including war, quarantine after pandemic, etc. In addition, unlike some 
other GCR mitigation measures, stockpiled food should retain near its purchase value in normal 
usage even in time periods where no GCR scenarios arise (i.e. if no emergencies arise before the 
stored food expires, the food can be eaten when rotated out of the stockpile and replaced with 
new reserves). 

We implement calculations for the illustrative example in a computational model using the 
software package Analytica by Lumina Decision Systems. The computational model 
incorporates all the defined equations and parameters. To estimate probability distributions of 
outputs, the model performs Latin hypercube sampling, with a model sample size of 10,000 
iterations. The model varies continuous-valued inputs according to the previously given 
probability distributions, and the model produces probabilistic values of its outputs. 
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For more on relevant distributions, e.g., Uniform() and Triangular() distributions, see Morgan
and Henrion (1990) or the Analytica User Guide (Chrisman, Henrion et al. 2007).

4.1.1 Assumptions for Baseline P(Global Catastrophe)
Our estimate for the probabilities of bright object and dark object impact risks is based partly on 
first estimating the total bright object asteroid impact risk, and then estimating how large the 
dark object comet impact risk is in comparison specifically to bright objects. We estimate the 
total probability of impacts of asteroids of size at least 1 km as corresponding to a frequency of 
one in 3 × 105 years. That is based on Figure 2.4 in NRC (2010) or the equivalent at NRC (2010),
which indicate a 1 km object impacts approximately once every 4 × 105 years. 

We assume that only 15% of the total population of bright NEOs remain undiscovered (NRC 
2010). For bright NEOs that have already been discovered, we also assume negligible impact 
risk: "none of those detected objects has a significant chance of impacting Earth in the next 
century" (NRC 2010). The simple way we reflect that in the model is to say the impact risk from 
visible/bright NEOs is 0.15 × (1/(3 × 105)).

We assume that impact frequency of Damocloids have a probability distribution of 
Uniform(0,4) × (1/(3 × 105)), based on statement of Napier (2008) that the hazard from 
Damocloids of 1 km diameter "is unknown; it could be negligible, or could more than double the
risk assessments based on the objects we see". Some corroboration is provided by the statement 
of Napier (2008) that at the time of his writing, for 1 km objects, there is an "expected impact 
frequency of about one such body every 500,000 years". Once every 500,000 years is about the 
same as the once every 3 × 105 years we assume for over-1km visible objects, but for better 
consistency and comparability with bright NEOs, we use 3 × 105 instead of once every 500,000. 
Napier (2008) also observes: "Estimates based on the mean impact cratering rate indicate that, on
the long-term, a 1 km impactor might be expected every half a million years or so. Again, 
modelling uncertainties to do with both excavation mechanics and the erratic replenishment of 
the near-Earth object (NEO) population yield an overall uncertainty factor of a few. A rate of one
such impact every 100,000 years cannot be excluded by the cratering evidence." 

All of the above numbers also have additional uncertainty factors (coefficients) of 
Triangular(0.5, 1, 2), which is loosely based on the statement in NRC (2010) that the 
uncertainties in intervals between impacts are "on the order of a factor of two". We assume that 
these uncertainties in the visible/bright NEO frequencies are uncorrelated with the uncertainties 
in the Damocloid frequencies.

Some corroboration of the relative risks of bright vs. dark objects, and associated 
uncertainties, is provided by NRC (2010): "With the completion of the Spaceguard Survey (that 
is, the detection of 90 percent of NEOs greater than 1 kilometer in diameter), long-period comets
will no longer be a negligible fraction of the remaining statistical risk, and with the completion 
of the George E. Brown, Jr. Near-Earth Object Survey (for the detection of 90 percent of NEOs 
greater than 140 meters in diameter), long-period comets may dominate the remaining unknown 
impact threat."

Finally, for an extremely simple estimate of the annual probability of nuclear war, based 
loosely on estimates given in the literature (Hellman 2008; Barrett, Baum et al. 2013; Lundgren 
2013) we simply use Triangular(0, 0.0001, 0.001). It seems likely that the annual probabilities of 
global catastrophe events are orders of magnitude higher for large-scale nuclear war than for 
large NEO/comet impacts.
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In our calculations, we use a simplifying approximation of annual probability as being 
equivalent to annual frequency (e.g. a frequency of 1 event in 500,000 years implies annual 
probability of 1/500000).

Table 1 contains summaries of the assumed annual probabilities of global catastrophe level 
events from each considered GCR type. The expressions reflect the substantial uncertainties.

Table 1: Expressions for Assumed Baseline Annual Probabilities of Global Catastrophe 
GCR Types Baseline P(Global 

Catastrophe)
Visible Near Earth 
Objects

Triangular(0.5, 1, 2) * 0.15 * 
(1/(3*10^5))

Long-Period Comets 
(Damocloids)

Triangular(0.5, 1, 2) * 
Uniform(0,4) * (1/(3*10^5))

Nuclear War Triangular(0, 0.0001, 0.001)

4.1.2 Assumptions for Reduction in P(Global Catastrophe) if Implementing Each GCR 
Reduction Measure
Although the lower bound of effectiveness of NEO detection and redirection might seem to be 
quite low, it is based partly on the idea that NEOs that haven't already been discovered might be 
significantly more difficult to detect than the ones that have already been detected. This may be 
suggested by Napier (2008, p. 226) regarding the success of NEO detection efforts to date: 
"There is a caveat: extremely dark objects would go undiscovered and not be entered in the 
inventory of global hazards."

For food stockpiling, the assumed probability distribution for the reduction in probability of 
global catastrophe level NEO/comet impacts is Uniform(0.1,0.9). It assumes that the stockpile 
would be comprised of extremely inexpensive sources of calories and nutrients (see below on 
cost assumptions), for which there would be large uncertainties about risk reduction 
performance. 

Table 2 contains summaries of the assumed effects and costs of GCR reduction measures. (A 
status-quo option, which adds no cost and does not reduce GCR, is omitted from the table but is 
an additional option in the model.) The effects of the measures are given in terms of their 
assumed reduction in probability of global catastrophe from each GCR type. The costs of the 
measures are given in terms of their present value of their costs in 2012 dollars.

 
Table 2: Assumed Effects and Costs of Risk Reduction Measures

GCR Reduction 
Measures

Reduction in P(Global Catastrophe) from Each GCR 
Type

Costs ($ 
Billion) 

Visible Near 
Earth Objects

Long-Period 
Comets 
(Damocloids)

Nuclear War

NEO tracking and 
redirection measures

Uniform(0.1,0.9) 0 0 7.5

Food stockpiling for 
all of humanity

Uniform(0.1,0.9) Uniform(0.1,0.9) Uniform(0.1,0.9) 1800

4.1.3 Assumptions for Costs of GCR Reduction Measures
The cost estimate for food stockpiling assumes a world population of 7 billion, 1 year stockpile, 
and per person-year stockpile cost based on the food expenditures of the world’s poorest people, 
which is approximately $0.70 per day (GiveWell 2013). 
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The cost for tracking and redirection capability assumes 30 years of costs, with $250 million 
annual costs (NRC 2010).

4.2 Example Results
In this section, we give results from the computational model for the illustrative example, using 
the previously stated assumptions. Figure 5 gives the probability density function (PDF) of the 
base-case annual probability of global catastrophe from both visible and dark NEO impacts. (On 
the horizontal axis, u is “mu” or micro, i.e. 10-6.) Contemplating probabilities of probabilities can
be confusing, but it is easy to see in PDF figures where there are broad spreads of probability 
(corresponding to great uncertainties) or narrow spreads (for less uncertainties). The figure 
shows that there are substantial uncertainties about dark-object Damocloid risks and even greater
uncertainties about nuclear war risks; both of the latter could be much greater than visible-NEO 
impact risks.

Figure 5: PDF of Baseline Annual Probabilities of Global Catastrophe

Table 3 gives the mean cost effectiveness of GCR reduction measures (without research to 
reduce uncertainties) in terms of how much the measure reduces the average total probability of 
global catastrophe per dollar spent on the measure. (Recall that in these terms, a high number for 
cost effectiveness is desirable, because it indicates a large reduction in global catastrophe 
probability for the dollars spent. The calculations incorporate the global catastrophe probability 
distributions shown in Figure 5, which showed that nuclear war risks could be much greater than 
NEO impact risks.)
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Table 3: Mean Cost Effectiveness of GCR Reduction Measures (Reduction in Total Global
Catastrophe Probability per $)

Include Nuclear 
War In Scope?

NEO Tracking 
and Redirection 
Measures

Food Stockpiling
for All of 
Humanity

Both food stockpiling 
and NEO 
tracking/redirection

Yes 4 x 10-17 1 x 10-16 1 x 10-16

No 4 x 10-17 2 x 10-18 2 x 10-18

Table 3’s mean cost effectiveness comparison would seem to suggest spending on food 
stockpiling if nuclear war risk is included in the scope of analysis, but instead would suggest 
spending on NEO tracking if nuclear war risk is not included in the scope of analysis. Moreover, 
as previously mentioned, there are substantial uncertainties about the risks and cost effectiveness,
and food stockpiles might actually be more cost effective than NEO tracking even if nuclear war 
risk is not included in the scope of analysis. Figure 5a and 5b gives the PDF of the cost 
effectiveness for each GCR reduction measure if nuclear war risk is / is not included in analysis, 
respectively. (The status-quo option has cost effectiveness of zero because it does not change 
GCR probability.) The figure indicates the overlapping ranges of the probability distributions of 
cost effectiveness of food stockpiling and NEO redirection measures. According to the 
assumptions used in the Monte Carlo model, if nuclear war risk is included in the scope of 
analysis, there is a 0.8 probability that food stockpiling will be the most cost effective measure, 
and there is a 0.2 probability NEO tracking and redirection will be most cost effective; 
conversely, if nuclear war risk is not included in the scope of analysis, there is a 0.999 
probability that NEO tracking and redirection will be the most cost effective measure, and there 
is a 0.001 probability that global food stockpiling will be most cost effective. 

Figure 5a: PDF of Cost Effectiveness of GCR Reduction Measures if Nuclear War Risk is
Included in Scope 

16

Global Food Stockpiling

NEO Tracking and Redirection



Figure 5b: PDF of Cost Effectiveness of GCR Reduction Measures if Nuclear War Risk is
Not Included in Scope 

Further research could reduce uncertainties to better determine which risk reduction measure 
would really be more cost effective. According to the Monte Carlo model’s assumptions and use 
of Equation 5, the cost effectiveness-based expected value of perfect information (CEEVPI) in 
the illustrative examples in this paper is $2 billion if nuclear war is included in the scope of 
analysis, and $400 million if nuclear war is not included in the scope of analysis. In this 
illustrative example, research on the risks and risk reduction effectiveness would have a 
substantial expected value, largely because of the huge uncertainties about the baseline risks and 
about the effectiveness of risk reduction measures. The example also supports the argument that 
we can learn something valuable by doing the analysis for more than one type of GCR at a time.

5. Conclusion
In this paper, we argue that value of information based on cost-effectiveness is a useful tool for 
analysis of GCR to inform risk-reduction decisions, and show how to apply it to GCRs and risk-
reduction interventions in a comprehensive, integrated fashion. We discuss key challenges in 
real-world implementation of this paper’s framework, and argue that these challenges can be 
addressed. We then illustrate these concepts with simple example models of impact risks from 
both visible and “dark” near earth objects as well as nuclear war effects, and consideration of 
related risk reduction measures; the illustrative example shows that such calculations can have 
considerable value, and also supports looking at more than one GCR at a time.

Unlike most value of information approaches, our approach for calculating value of 
information is based on risk reduction cost effectiveness, to avoid implicitly equating lives and 
dollars e.g. using a value of statistical life (VSL), which may be inappropriate given the scale of 
GCRs. Our equation for value of information may be useful in other domains where VSLs would
not be appropriate. 
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Our suggested approach could be used generally to work toward a comprehensive rigorous 
assessment of GCRs and risk-reduction options. A useful step could be to expand and update this
paper’s illustrative model (e.g. to reflect more recent NEO research5 and other NEO risk 
management options6). However, it would be more valuable to work towards a broader agenda 
for integrated assessment to inform GCR reduction decisions. Ideally, the scope of such 
assessment would address all important GCRs over key time periods (e.g. the next century) and 
also key risk-reduction options of relevant stakeholders (including, but not limited to, public 
policy options of governments). This paper’s framework could help guide steps in such 
assessment by prioritizing pieces of research in terms of value of information for reducing the 
total probability of GCRs. While real-world GCR research would not result in perfect 
information, even imperfect information could have significant value in informing GCR 
reduction resource allocation decisions.

Our approach could have great value in comprehensively, rigorously assessing GCR and 
risk-reduction options. Prior GCR research is of only limited value to informing GCR reduction 
decisions. Much of the work to date has focused on specific GCRs, leaving great uncertainty 
about which GCRs are most important to focus on. Notable exceptions include research finding 
that GCRs from cosmic events are small relative to GCRs from human actions (2005); an 
informal survey of GCR researchers providing estimates of the probabilities of human extinction 
from a small number of GCR types (Sandberg and Bostrom 2008); analyses of interacting 
sequences of GCRs (Tonn and MacGregor 2009; Baum, Maher Jr. et al. 2013); and several 
largely-qualitative surveys (Bostrom 2002; Rees 2003; Posner 2004; Smil 2008; Cotton-Barratt, 
Farquhar et al. 2016). These studies are insightful but do not provide rigorous quantitative 
recommendations for risk-reduction resource allocations. We are aware of only one study, that of
Leggett (2006) which attempts to quantitatively evaluate GCR reduction measures across a broad
space of GCR, but that study had shortcomings such as not considering all GCR categories nor 
all potentially valuable GCR reduction measures. The modest literature available does not come 
close to resolving the large uncertainties surrounding both the GCRs themselves and the 
effectiveness of possible risk reducing interventions. Our work suggests that comprehensive, 
integrated assessment of GCRs could be quite valuable for informing GCR reduction decisions, 
and tools can be developed for making comprehensive, integrated assessments for informing 
GCR risk reduction decisions.

Appendix I. Derivation of Cost Effectiveness-based Formula for Expected Value of 
Information
In this Appendix, we provide the detail on our derivation of the CEEVPI formula.
Our following calculations are aided by two simplifying assumptions, as previously discussed: a 
binary threshold for global catastrophes, and independence of different GCRs (except to the 
extent that GCR event interactions and dependencies are accounted for in the fault trees or other 
model components). Then let Xj equal the value loss due to global catastrophe j. Due to the 
binary threshold assumption, Xj is the same for all j. Let R(t) be the risk of an event occurring 
during time period t, with R = probability × magnitude. Then, given the independence of 
different GCRs, the total risk for y GCRs is: 

Rtot (t )=p tot (t ) X=(1−∏
j

y

(1−p j( t)))X (Eq. 3)
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We further assume that all GCRs have sufficiently low probabilities-per-time-period pj(t) that
the total probability of global catastrophe in that time period can be approximated as the sum of 
the independent probabilities, such that:

Rtot (t )≈(∑
j

y

p j( t))X (Eq. 4)

In this paper, we evaluate possible GCR-reducing interventions in terms of their cost-
effectiveness, i.e. their reduction in GCR per unit cost. We favor cost-effectiveness for two 
reasons. First, cost-benefit analysis is hampered by the challenge of quantifying the value loss 
due to global catastrophe, X. The benefit of interventions is the reduction in risk, which also 
depends on X. While X is generally believed to be very large, quantitative estimates span a huge 
range, as previously mentioned. In contrast, cost-effectiveness analysis does not depend on X. 
Let ci and CEi be the cost and cost-effectiveness of intervention i. Then:

CEi=
(R0 ,tot (t)−R i ,tot (t))

ci
=

( p0 ,tot (t)−pi , tot( t))
c i

X (Eq. 5)

Since X is equal for all global catastrophes, comparisons of the cost-effectiveness of different
interventions are the same regardless of the value of X.

We assume that there is a decision to be made about allocation of resources to some 
combination of direct risk reduction and research, and that the main decision rule is to choose 
whatever combination of options has best overall expected GCR reduction cost effectiveness 
among options considered in the analysis. Then the decision maker should buy as much risk 
reduction (and risk research enabling better risk reduction decisions) as they can at whatever 
total cost, as long as that results in the greatest cost effectiveness. (We assume that budgets are 
not an issue in the context of the risk reduction and research options under consideration, and we 
do not explicitly account for potential budget constraints in the following. This implicitly 
assumes that sufficient total resources are either being provided by a single entity or are 
coordinated in some fashion.) 

If the information’s expected effect and cost are such that even with the research cost 
included, it would achieve a better cost effectiveness than whatever would have been the optimal
investment before the research based on expected values, then the research information is worth 
its cost. This is true for investments in information up to the point where the expected cost 
effectiveness with research is the same as without research. We use that relation to make an 
equation to solve for the expected value of the information in terms of everything else.

For the purposes of this analysis we ignore actual costs of research and focus on the amount 
of resources the decision maker ought to be willing to pay for the value added by the research in 
the context of the decision the research could inform. In other words, we focus on finding the 
benefits of research, which would result if research yields information that reduces or eliminates 
uncertainties in a decision model (i.e. turns model variable probability distributions into either 
tighter, more-accurate distributions, or into maximally accurate point values). 

We define several terms:
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There exists a set of n available risk reduction options numbered 0, 1, … i… n. Option 
number 0 is the status quo case, where no new (or non-“business-as-usual”) risk reduction option
is implemented. 

ci is the cost of implementing risk reduction option i. (It adds no cost to do nothing new, so c0

= 0.)
pi is the annualized total probability of global catastrophe if implementing option i.
Each ci and pi is assumed to be a random variable with some probability distribution 

reflecting uncertainty about the variable’s true value or value in a particular instance. p and c 
terms are assumed to be uncorrelated, i.e., covariance(p,c) values are assumed to be zero. 
Computationally, probability-distribution uncertainty is represented using Monte Carlo 
simulation, where in Monte Carlo simulation iteration m, there are sampled values cim and pim. 
The expected value of any variable x is E[x], which is found computationally by finding the 
mean value of variable x across the set of Monte Carlo iterations.

cr is the cost of conducting research that reduces uncertainties by some amount.
In any particular Monte Carlo iteration m, the cost effectiveness of risk reduction measure i is

the ratio of risk reduction to cost, or CEim, where:

CEim=
( p0m−pim)

c im
         (Eq. 6)

Then the risk reduction option s with the “best” or highest risk reduction cost effectiveness in
Monte Carlo iteration m is the option where:

s=argmax
i [ ( p0m−p im)

cℑ
]    (Eq.7)

In other words, 

( p0m−psm)
csm

=max
i [ ( p0m− pim )

c im ]        (Eq. 8)

We denote cases whether research is conducted to reduce uncertainty on a particular factor 
using superscript b for “before” research or without information from research, and superscript a 
for “after” research or with information from research. (Thus, before research is conducted on pi, 
it is pi

b, and after research is conducted, it is it is pi
a.) Again, we ignore actual costs of research 

and focus on the amount of resources the decision maker ought to be willing to pay for the total 
value added by the research. We use the term w to denote the amount of resources the decision 
maker ought to be willing to pay for the total added value of conducting research. (It adds no 
value to do no research.) For the purposes of this derivation, we do not provide more detailed 
break-downs of the amount of resources the decision maker ought to be willing to pay for the 
value added by performing specific pieces of research that comprise total value added by 
research v, which actually could consist of separate pieces of research on different uncertain 
factors. (The amount of resources the decision maker ought to be willing to pay for the value 
added by each piece of research could be assessed using an extension of the derivation provided 
here.) 
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Note that the best option after research, sa (which has cost effectiveness in Monte Carlo 
iteration m of (p0ma −psm

a )/c sma ) is not necessarily the same as the best option before research, sb 

(which has cost effectiveness in Monte Carlo iteration m of (p0mb − psm
b )/c smb ). Research that 

reduces but does not eliminate uncertainty about a factor yields imperfect information. In a case 
where research produces perfect information about a factor, all uncertainty is eliminated about 
the factor after research. In terms of Monte Carlo iterations, after perfect information, one of the 
Monte Carlo iterations will have randomly-sampled factor values whose are closest to the actual 
real-world factor values. 

As long as doing more research adds more value, and if we ignore the actual costs of 
performing the research, we assume that resources for research ought to be invested in up to the 
point where research would be so expensive that a funder would obtain no further benefit from 
investing in additional research (because up to that point, they would get a better overall cost 
effectiveness by investing in additional research). At that point, the expected cost effectiveness 
of the best risk-reduction option before research is equal to the expected cost effectiveness of the 
best risk-reduction option after research, including the amount of resources the decision maker 
ought to be willing to pay for the total value added by research:

max
i
E[ (p0b−p ib)

ci
b ]=maxi E[ (p0a−p ia)

(c i
a+v ) ] (Eq. 9)

Using the best-option notation,

E[ ( p0b−psb)cs
b ]=E[ ( p0a−psa)(cs

a+w) ]   (Eq. 10)

The E[·] terms can be distributed and re-gathered because all the relevant calculations (i.e., 
both the expected-value calculations and the cost-effectiveness calculations) involve linear 
operations and because p and c variables are assumed to be uncorrelated. (To be more specific, 
manipulation of the numerator and denominator are allowed because they are linear operations, 
and multiplicative operations are allowed because the covariance is assumed to be 0.) 
Distributing and rearranging the terms to solve for the expected value of the amount of resources 
the decision maker ought to be willing to pay for the total value added by research, E[w],

(E[ p0
b]−E [ ps

b])
E[cs

b]
=

(E[ p0
a]−E [ ps

a])
(E[cs

a]+E[w ])
       (Eq. 11)

E [w ]=E[ (csb) (p0a−psa)(p0b−psb)
−cs

a]    (Eq. 12)

Thus, the above expression for E[w] gives the value of research as the cost effectiveness-
based expected value of information, CEEVI: 
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CEEVI=E[(csb)(p0a−psa)( p0b−psb)
−cs

a]            (Eq. 13)

This formula for CEEVI actually applies to both perfect information and imperfect 
information cases. However, our focus in this derivation is on the limiting case where the 
research yields perfect information, which provides the upper limit to the value of research, i.e. 
the cost effectiveness-based expected value of perfect information CEEVPI. It turns out that 
when used in Analytica software by Lumina Decision Systems, the above CEEVI formula can be 
used in a straightforward fashion to set up the Monte Carlo simulation computations for CEEVPI
(by directly using each factor’s Monte Carlo sampling values in each Monte Carlo iteration) and 
that is what we use in the illustrative Analytica model accompanying this paper. (Computation of
the cost-effectiveness based expected value of imperfect information CEEVII would require an 
extra step to simulate after-research imperfect-information probability distributions for each 
factor, instead of after-research perfect-information point values.)
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1 For an example of a canonical utility function based decision analysis framework for one GCR category, asteroid and 
comet impact risk, see Lee et al. (2014).
2 For an illustrative example of a probability distribution reflecting uncertainty about an annualized global catastrophe 
probability, see Figure 5 in Section 4.2. For more on such probability distributions, see Chs. 4 and 5 of Morgan and Henrion
(1990).
3 For some GCR types, it may not be most useful to think in terms of consequence-exceedance thresholds, but in terms of 
probabilities of various possibilities, such as in future “artificial superintelligent catastrophe” scenarios. However, modeling 
approaches such as fault trees could be useful for some such scenarios (Barrett and Baum 2017).
4 There are also related challenges in selection of metrics, such as for event consequences: whether to focus on estimated 
fatalities over some specific time scale, or to also consider economic impact, etc. Even choosing cost metrics for use in cost-
effectiveness analysis presents challenges; in this paper we assume cost is defined in monetary (dollar) terms but those have 
limitations (Baum 2012), and scarcities exist for other resources such as labor capacity. 
5 See, e.g., Reinhardt et al. (2015).
6 For example, there are a number of options for alternative food sources during a crop-failure crisis (Denkenberger and 
Pearce 2015). Those potentially could be more cost effective than food stockpiling, but we believe their effectiveness also 
would have greater uncertainty because of complexity, etc. 


